i

LINUX KERNEL

IN A NUTSHELL

*ﬁ%

-t

i% Jtitle.4229 Page ii Friday, December 1, 2006 9:52 AM

Other Linux resources from 0'Reilly

Related titles

Linux Books
Resource Center

Conferences

O’REILLY N_E;I'WORK
Safari
Bookshelf.

Building Embedded Linux ~ Running Linux

Systems Understanding Linux
Linux Device Drivers Network Internals
Linux in a Nutshell Understanding the Linux
Linux Pocket Guide Kernel

linux.oreilly.com is a complete catalog of O’Reilly’s
books on Linux and Unix and related technologies, in-
cluding sample chapters and code examples.

O’Reilly brings diverse innovators together to nurture
the ideas that spark revolutionary industries. We spe-
cialize in documenting the latest tools and systems,
translating the innovator’s knowledge into useful skills
for those in the trenches. Visit conferences.oreilly.com
for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier on-
line reference library for programmers and IT
professionals. Conduct searches across more than
1,000 books. Subscribers can zero in on answers to
time-critical questions in a matter of seconds. Read the
books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

ig Jtitle.4229 Page iii Friday, December 1, 2006 9:52 AM

*

LINUX
KERNEL

IN A NUTSHELL

Greg Kroah-Hartman

O’REILLY"

Beijing « Cambridge « Farnham = KélIn « Paris « Sebastopol « Taipei * Tokyo

.

4~ 4

ig ,LKNSTOC.fm.8428 Page v Friday, December 1, 2006 9:55 AM

*

Table of Contents

Preface ix
Partl. Building the Kernel

1. Introductionl 3

Using This Book 4

2. Requirements for Building and Using the Kernel 5

Tools to Build the Kernel 5

Tools to Use the Kernel 6

3. Retrieving the KernelSource 12

What Tree to Use 12

Where to Find the Kernel Source 13

What to Do with the Source 15

4. ConfiguringandBuilding 17

Creating a Configuration 17

Modifying the Configuration 18

Building the Kernel 23

Advanced Building Options 26

5. Installing and Booting fromaKernel 29

Using a Distribution’s Installation Scripts 30

Installing by Hand 31

Modifying the Bootloader for the New Kernel 32

v

.

4~ 4

ig LLKNSTOC.fm.8428 Page vi Friday, December 1, 2006 9:55 AM

*

6. UpgradingaKernel 35
Download the New Source 36
Applying the Patch 38
Reconfigure the Kernel 40
Can’t This Be Automated? 42

Partll. Major Customizations

7. CustomizingaKernel 45
Using a Distribution Kernel 45
Determining the Correct Module from Scratch 52

8. Kernel ConfigurationRecipes 63
Disks 63
Devices 66
CPU 71
Networking 75
Filesystems 80
Security 82
Kernel Debugging 83

Partlll. Kernel Reference

9. Kernel Boot Command-Line Parameter Reference 87
Module-Specific Options 87
Console Options 88
Interrupt Options 91
Memory Options 92
Suspend Options 94
CPU Options 95
Scheduler Options 97
Ramdisk Options 98
Root Disk Options 99
Init Options 101
kexec Options 101
RCU Options 102
ACPI Options 103
SCSI Options 106
PCI Options 107

vi | Tableof Contents

.

*ﬁ%

- 4~ 4

ig LLKNSTOC.fm.8428 Page vii Friday, December 1, 2006 9:55 AM

*

Plug and Play BIOS Options 109
SELinux Options 110
Network Options 111
Network File System Options 111
Hardware-Specific Options 113
Timer-Specific Options 114
Miscellaneous Options 115
10. Kernel Build Command-Line Reference 117
Informational Targets 117
Cleaning Targets 118
Configuration Targets 118
Build Targets 119
Packaging Targets 120
Documentation Targets 121
Architecture-Specific Targets 121
Analysis Targets 121
11. Kernel Configuration Option Reference 122

Part IV. Additional Information

A. Helpful Utilities 161
Managing Your Patches with quilt 163

git 165
ketchup 166

B. Bibliography 168
Index 171
Table of Contents | vii

.

4~ 4

LLKNSTOC.fm.8428 Page viii Friday, December 1, 2006 9:55 AM

i% ,ch00.9665 Page ix Friday, December 1, 2006 9:56 AM

Preface

When the topic of this book was first presented to me, I dismissed it as some-
thing that was already covered by the plentiful documentation about the Linux
kernel. Surely someone had already written down all of the basics needed in order
to build, install, and customize the Linux kernel, because it seemed to be a very
simple task to me.”

After digging through the different HOWTOs and the Linux kernel Documenta-
tion directory, I came to the conclusion that there was no one place where all of
this information could be found. It could be gleaned by referencing a few files
here, and a few outdated web sites there, but this was not acceptable for anyone
who did not know exactly what they were looking for in the first place.

So this book was created with the goal of consolidating all of the existing informa-
tion already scattered around the Internet about building the Linux kernel, as well
as adding a lot of new and useful information that was not written down
anywhere but had been learned by trial and error over my years of doing kernel
development.

My secret goal of this book is to bring more people into the Linux kernel develop-
ment fold. The act of building a customized kernel for your machine is one of the
basic tasks needed to become a Linux kernel developer. The more people that try
this out, and realize that there is not any real magic behind the whole Linux
kernel process, the more people will be willing to jump in and help out in making
the kernel the best that it can be.

* Disclaimer: I'm a Linux kernel developer by trade, so things that seem basic and simple to me at
times are completely incomprehensible by most people, as my family continues to remind me.

i% ,ch00.9665 Page x Friday, December 1, 2006 9:56 AM

%

Who This Book Is For

This book is intended to cover everything that is needed to know in order to prop-
erly build, customize, and install the Linux kernel. No programming experience is
needed to understand and use this book.

Some familiarity with how to use Linux, and some basic command-line usage is
expected of the reader.

This book is not intended to go into the programming aspects of the Linux kernel;
there are many other good books listed in the Bibliography that already cover this
topic.

How the Book Is Organized

This book is organized into four parts.

Part I, Building the Kernel, includes Chapters 1 through 6, which cover everything
you need to know about retrieving, building, installing, and upgrading the Linux
kernel, in more or less step-by-step fashion.

Chapter 1, Introduction
This chapter explains when and why you would want to build the kernel.

Chapter 2, Requirements for Building and Using the Kernel
This chapter covers the different programs and tools that are needed in order
to properly build the kernel. It also covers a number of different programs
that are tied very closely to the kernel, how to determine the needed version
of the programs, and where to find them.

Chapter 3, Retrieving the Kernel Source
This chapter discusses how the different Linux kernel versions relate to each
other, where to retrieve the Linux kernel source code, and how to download
it properly.

Chapter 4, Configuring and Building
This chapter explains how to configure and properly build the Linux kernel.

Chapter 5, Installing and Booting from a Kernel
This chapter shows how to install the kernel that has been built properly, and
then boot into that kernel version.

Chapter 6, Upgrading a Kernel
This chapter explains how to upgrade a kernel that was previously built to a
newer version without having to start over from nothing.

Part II, Major Customizations, consists of Chapters 7 and 8, which describe how
to properly configure the kernel based on the hardware present in the system, and
provides a number of different “recipes” for common configurations.

Chapter 7, Customizing a Kernel
This chapter discusses how to customize the kernel for the hardware that is
present on the system. It goes over a variety of different ways to determine

x | Preface

%

i% ,ch00.9665 Page xi Friday, December 1, 2006 9:56 AM

what options should be selected and provides some simple scripts to help
with the task.

Chapter 8, Kernel Configuration Recipes
This chapter explains how to configure the kernel for a variety of common
situations.

Part III, Kernel Reference, consists of Chapters 9 through 11. These chapters
provide a reference to the different kernel command line options, the kernel build
options, and a select few of the different kernel configuration options.

Chapter 9, Kernel Boot Command-Line Parameter Reference
This chapter details all of the different command-line options that can be
passed to the kernel, and what the different options do.

Chapter 10, Kernel Build Command-Line Reference
This chapter describes the different command line options that are available
when building the kernel and how to use them.

Chapter 11, Kernel Configuration Option Reference
This chapter focuses on a few of the more popular and important Linux
kernel configuration options.

Part IV, Additional Information

Appendix A, Helpful Utilities
This chapter introduces a number of very good and handy tools that everyone
who wishes to track the latest Linux kernel version should use.

Appendix B, Bibliography
This chapter offers a list of useful references that you can use to track down
more information on building your Linux kernel.

Online Version and License

This book is freely available under the Creative Commons “Attribution-
ShareAlike” license, Version 2.5. This license can be seen in its entirety at http:/
creativecommons.org/licenses/by-sa/2.5/. The full book is also available online at
http:/fwww.kroah.com/lkn.

Conventions Used in This Book

This book uses the following typographical conventions:

Italic
Indicates progams, tools, commands and command options, distribution
packages, files, directories, usernames, and hostnames. Also indicates
nomenclature that we’ve not previously used and emphasized words.

Constant Width
Indicates strings used for kernel configuration, as well as a few special terms
such as device names. Also used to show command output and the contents
of text and program files.

Preface | xi

- ikl

i% ,ch00.9665 Page xii Friday, December 1, 2006 9:56 AM

Constant Width Bold
Used in examples to indicate commands or other text that should be typed
literally by the user.

Constant Width Italic
Indicates text that you should replace with your own values; for example,
your own name or password. When this appears as part of text that you
should type in, it is shown as Constant Width Italic Bold.

#, $
Used in some examples as the root shell prompt (#) and as the user prompt

($) under the Bourne or bash shell.

W A

.)
(O 18
I8

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

=

Using Shell Scripts

This book is here to help you get your job done. In general, you may use the shell
scripts in this book in your own scripts and documentation. You do not need to
contact us for permission. The major scripts can be downloaded from the book’s
web site on O’Reilly Media, http://www.oreilly.com/catalog/9780596100797 .

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Linux Kernel in a Nutshell by
Greg Kroah-Hartman. Copyright 2007 O’Reilly Media, Inc., 978-0-596-10079-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Enabled

= When you see a Safari® enabled icon on the cover of your favorite
sa'arl technology book, that means the book is available online through
sy the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual
library that lets you easily search thousands of top tech books, cut and paste code
samples, download chapters, and find quick answers when you need the most
accurate, current information. Try it free at http://safari.oreilly.com.

xii | Preface

i% ,ch00.9665 Page xiii Friday, December 1, 2006 9:56 AM

*

How to Contact Us

We have tested and verified all of the information in this book to the best of our
ability, but you may find that features have changed (or even that we have made
mistakes!). Please let us know about any errors you find, as well as your sugges-
tions for future editions, by writing:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international/local)

707-829-0104 (fax)

You can also send us messages electronically. To be put on the mailing list or
request a catalog, send email to:

info@oreilly.com
To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

We have a web site for the book, where we’ll list examples, errata, and any plans
for future editions. You can access this page at:

http://www.oreilly.com/catalog/9780596100797

Acknowledgments

Thanks first go to my wonderful wife Shannon and my beautiful children Made-
line and Griffin for their understanding and patience while I took the time to work
on this book. Without their support and prodding, this book would have never
been completed. Special thanks to Shannon for getting me into Linux kernel
development in the first place. Without her effort, I would be still doing some odd
embedded programming job, and would have never discovered this great commu-
nity in which to work in.

My editor, Andy Oram, is the driving force behing this book, shaping it into
something that is both readable and informative. His editing skills and patience as
deadlines flew by were instrumental in the creation and completion of this book.

Also a big thanks go to the original editor of this book, David Brickner, for giving
me the chance to work on this project and believing that I could complete it,
despite the first version weighing in at over 1,000 pages.

The technical reviewers for this book were amazing, catching all of the numerous
mistakes and pointing out omissions that needed to be filled. The reviewers were
(in alphabetic order by first name), Christian Benvenuti, Christian Morgner,
Golden G. Richard 111, Jean Delvare, Jerry Cooperstein, Michael Boerner, Rik van
Riel, and Robert Day. Any remaining problems are due to me, and not their excel-
lent skills.

Preface | xiii

i% ,ch00.9665 Page xiv Friday, December 1, 2006 9:56 AM

A special thanks to Randy Dunlap for going over the kernel boot parameters with
a fine-tooth comb and pointing out issues in that chapter. Also to Kay Sievers,
who helped immensely with all of the chapter on customizing the kernel, and who
provided the script at the end of that same chapter. Without his sysfs help and
knowledge, that chapter would not have been feasible.

And a final special thanks to my sixth grade English teacher, Ms. Gruber, for
teaching me that writing was something that was possible to do, and showing me
the enjoyment in doing it. Without that start, none of this would have been
attainable.

i% ,part1.12813 Page 1 Friday, December 1, 2006 10:08 AM

*

Building the Kernel

This part of the book shows how to download, build, and install the kernel. It is
largely a step-by-step guide.

Chapter 1, Introduction

Chapter 2, Requirements for Building and Using the Kernel
Chapter 3, Retrieving the Kernel Source

Chapter 4, Configuring and Building

Chapter 5, Installing and Booting from a Kernel

Chapter 6, Upgrading a Kernel

*ﬁ%

jpart1.12813 Page 2 Friday, December 1, 2006 10:08 AM

,ch01.11032 Page 3 Friday, December 1, 2006 9:57 AM

Introduction

Despite its large code base (over seven million lines of code), the Linux kernel is
the most flexible operating system that has ever been created. It can be tuned for a
wide range of different systems, running on everything from a radio-controlled
model helicoptor, to a cell phone, to the majority of the largest supercomputers in
the world. By customizing the kernel for your specific environment, it is possible
to create something that is both smaller and faster than the kernel provided by
most Linux distributions. This book will go into how to build and install a custom
kernel, and provide some hints on how to enable specific options that you will
probably wish to use for different situations.

No Linux distribution provides the exact kernel most of its users want. Modern
distributions have gotten very accommodating, compiling in support for every
known device, for sound, and even for power conservation. But you will likely
have a need that’s different from the majority of users (and every distribution has
to try to meet the needs of the majority). You may just have different hardware.
And when a new kernel comes out, you may want to start using it without waiting
for a distribution to be built around it.

For a host of reasons, you will want during your Linux career to sometimes build
a kernel, or to tweak the parameters of one you are running. This book gives you
the information you need to understand the kernel from a user’s point of view,
and to make the most common changes.

There are also good reasons to remove features from the kernel, particularly if you
are running it on an embedded system or one with a small form factor.

When tweaking, it’s helpful to understand the internals of kernel behavior. These
are beyond the scope of this book, except for brief summaries that appear with
certain options. Appendix B includes references to other books and material that
can give you more background.

i% ,ch01.11032 Page 4 Friday, December 1, 2006 9:57 AM

%

Using This Book

Do not configure or build your kernel with superuser permissions

‘*@ enabled!

This warning is the most important thing to remember while working through the
steps in this book. Everything in this book—downloading the kernel source code,
uncompressing it, configuring the kernel, and building it—should be done as a
normal user on the machine. Only the two or three commands it takes to install a
new kernel should be done as the superuser (root).

There have been bugs in the kernel build process in the past, causing some special
files in the /dev directory to be deleted if the user had superuser permissions while
building the Linux kernel.” There are also issues that can easily arise when uncom-
pressing the Linux kernel with superuser rights, as some of the files in the kernel
source package will not end up with the proper permissions and will cause build
errors later.

The kernel source code should also never be placed in the /usr/src/linux/ direc-
tory, as that is the location of the kernel that the system libraries were built
against, not your new custom kernel. Do not do any kernel development under
the /usr/src/ directory tree at all, but only in a local user directory where nothing
bad can happen to the system.

* This took quite a while to fix, as none of the primary kernel developers build kernels as root, so
they did not suffer from the bug. A number of weeks went by before it was finally determined that
the act of building the kernel was the problem. A number of kernel developers half-jokingly sug-
gested that the bug remain in, to help prevent anyone from building the kernel as root, but calmer
heads prevailed and the bug in the build system was fixed.

4 | Chapter1: Introduction

%

i% ,ch02.11211 Page 5 Friday, December 1, 2006 9:57 AM

*

Requirements for Building and
Using the Kernel

This chapter describes the programs you need to configure a kernel, build it, and
successfully boot it. It’s a smart idea to consult the file Documentation/Changes to
verify the specific version number you should have of each tool described in this
chapter. This chapter was based on the 2.6.18 kernel, and describes the versions
of tools that work with that kernel. If you are using a different kernel, please verify
that you have the required versions as specified in this file, or things might not
work properly and it can be very hard to determine what went wrong.

Tools to Build the Kernel

Most Linux distributions offer an installation option to install a range of kernel
hacking packages. If your distribution offers this option, it is easiest to install this
instead of trying to track down all of the individual programs that are needed for
this task.

Only three packages that are needed in order to successfully build a kernel: a
compiler, a linker, and a make utility. This section describes the contents of each
package.

Compiler

The Linux kernel is written in the C programming language, with a small amount
of assembly language in some places. To build the kernel, the gcc C compiler
must be used. Most Linux distributions have a package entitiled gcc that should
be installed. If you wish to download the compiler and build it yourself, you can
find it at http://gcc.gnu.org.

As of the 2.6.18 kernel release, the 3.2 version of gec is the oldest that can prop-
erly build a working kernel. Be warned that getting the most recent gcc version is
not always a good idea. Some of the newest gcc releases don’t build the kernel

%

ﬁ

*ﬁ%

i% ,ch02.11211 Page 6 Friday, December 1, 2006 9:57 AM

%

properly, so unless you wish to help debug compiler bugs, it is not recommended
that you try them out.

To determine which version of gcc you have on your system, run the following
command:

$ gcc --version

Linker

The C compiler, gee, does not do all of the compiling on its own. It needs an addi-
tional set of tools known as binutils to do the linking and assembling of source
files. The binutils package also contains useful utilities that can manipulate object
files in lots of useful ways, such as to view the contents of a library.

binutils can usually be found in a distribution package called (not surprisingly)
binutils. If you wish to download and install the package yourself, you can find it
at http://www.gnu.org/software/binutils.

As of the 2.6.18 kernel release, the 2.12 release of binutils is the oldest that can
successfully link the kernel. To determine which version of binutils you have on
your system, run the following command:

$1d -v

make

make is a tool that walks the kernel source tree to determine which files need to be
compiled, and then calls the compiler and other build tools to do the work in
building the kernel. The kernel requires the GNU version of make, which can
usually be found in a package called make for your distribution.

If you wish to download and install make youself, you can find it at http://www.
gnu.org/software/make.

As of the 2.6.18 kernel release, the 3.79.1 release of make is the oldest that can
properly build the kernel. It is recommended that you install the latest stable
version of make, because newer versions are known to work faster at processing

the build files.

To determine which version of make you have on your system, run the following
command:

$ make --version

Tools to Use the Kernel

While the version of the kernel that is running does not usually affect any user
application, there are a small number of program for which the kernel version is
important. This section describes a number of tools that are probably already
installed on your Linux system. If you upgrade your kernel to a version different
from the one that came with your distribution, some of these packages may also
need to be upgraded in order for the system to work properly.

6 | Chapter2: Requirements for Building and Using the Kernel

%

ig ,ch02.11211 Page 7 Friday, December 1, 2006 9:57 AM ig

util-linux

The util-linux package is a collection of small utilities that do a wide range of
different tasks. Most of these utilities handle the mounting and creation of disk
partitions and manipulation of the hardware clock in the system.

If you wish to download and install the util-linux package yourself, you can find it
at http://www.kernel.org/pub/linux/utils/util-linux.

As of the 2.6.18 kernel release, the 2.10 release of util-linux is the oldest that
works properly. It is recommended that you install the latest version of this
package, because new version support new features added to the kernel. Bind
mounts are one example of an option in newer kernels, and a newer version of
util-linux is needed in order to have them work properly.

=
o

2
=5
S
o
3
o
S
-
w

To determine which version of the util-linux package you have on your system,
run the following command:

$ fdformat --version

module-init-tools

The module-init-tools package is needed if you wish to use Linux kernel modules.
A kernel module is a loadable chunk of code that can be added to or removed from
the kernel while the kernel is running. It is useful to compile device drivers as
modules and then load only the ones that correspond to the hardware present in
the system. All Linux distributions use modules in order to load only the needed
drivers and options for the system based on the hardware present, instead of being
forced to build all possible drivers and options in the kernel in one large chunk.
Modules save memory by loading just the code that is needed to control the
machine properly.

The kernel module loading process underwent a radical change in the 2.6 kernel
release. The linker for the module (the code that resolves all symbols and figures
out how to put the pieces together in memory) is now built into the kernel, which
makes the userspace tools quite small. Older distributions have a package called
modutils that does not work properly with the 2.6 kernel. The module-init-tools
package is what you need to get the 2.6 kernel to work properly with modules.

If you wish to download and install the module-init-tools package yourself, you
can find it at http://www.kernel.org/pub/linux/utils/kernel/module-init-tools.

As of the 2.6.18 kernel release, the 0.9.10 release of module-init-tools is the oldest
version that works properly. It is recommended that the latest version of this
package be installed, as new features added to the kernel can be used by newer
versions of this package. Blacklisting modules to prevent them from being auto-
matically loaded by the udev package is one such option that is present in newer
versions of module-init-tools, but not older ones.

To determine which version of the module-init-tools package you have on your
system, run the following command:

$ depmod -V

Tools to Use the Kernel | 7

- ikl

i% ,ch02.11211 Page 8 Friday, December 1, 2006 9:57 AM

%

Filesystem-Specific Tools

A wide range of tools specific to particular filesystems are necessary to create,
format, configure, and fix disk partitions. The util-linux package has a few of
these utilities, but some of the more popular filesystems have separate packages
that contain the necessary programs.

ext2/ext3/ext4

The ext3 and experimental ext4 filesystems are upgrades of ext2 and can be
managed with the same tools; any recent version of an ext2-based tool can work
with the other two filesystems as well.

To work with any of these filesystems, you must have the e2fsprogs package. If
you wish to download and install this package yourself, you can find it at http:/
e2fsprogs.sourceforge.net.

As of the 2.6.18 kernel release, the 1.29 release of e2fsprogs is the oldest that
works properly with the kernel. It is highly recommended that you use the newest
version in order to take advantage of newer features in the ext3 and ext4
filesystems.

To determine which version of e2fsprogs you have on your system, run the
following command:

$ tune2fs

JFS

To use the JFS filesystem from IBM, you must have the jfsutils pacakge. If you
wish to download and install this package yourself, you can find it at http://jfs.
sourceforge.net.

As of the 2.6.18 kernel release, the 1.1.3 release of jfsutils is the oldest that works
properly with the kernel. To determine which version of jfsutils you have on your
system, run the following command:

$ fsck.jfs -V

ReiserFS

To use the ReiserFS filesystem, you must have the reiserfsprogs package. If you
wish to download and install this package yourself, you can find it at http://www.
namesys.com/download.html.

As of the 2.6.18 kernel release, the 3.6.3 release of reiserfsprogs is the oldest that
works properly with the kernel. To determine which version of reiserfsprogs you
have on your system, run the following command:

$ reiserfsck -V

8 | (Chapter2: Requirements for Building and Using the Kernel

%

ig ,ch02.11211 Page 9 Friday, December 1, 2006 9:57 AM

XFS

To use the XFS filesystem from SGI, you must have the xfsprogs package. If you
wish to download and install this package yourself, you can find it at http://oss.sgi.

com/projects/xfs.
As of the 2.6.18 kernel release, the 2.6.0 release of xfsprogs is the oldest that
works properly with the kernel. To determine which version of xfsprogs you have z
on your system, run the following command: E
§ xfs_db -V 5
2
Quotas -

To use the quota functionality of the kernel, you must have the quota-tools
package.” This package includes programs that let you set quotas on users,
provide statistics on the amount of quota being used by different users, and issue
warnings when people get too close to using up their available filesystem quota.

If you wish to download and install this package yourself, you can find it at http://
sourceforge.net/projects/linuxquota.

As of the 2.6.18 kernel release, the 3.09 release of quota-tools is the oldest that
works properly with the kernel. To determine which version of quota-tools you
have on your system, run the following command:

$ quota -V

NFS

To use the NFS filesystem properly, you must have the nfs-utils package.t This
package includes programs that let you mount NFS partitions as a client, and run
an NFS server.

If you wish to download and install this package yourself, you can find it at http://
nfs.sf.net.

As of the 2.6.18 kernel release, the 1.0.5 release of nfs-utils is the oldest that works
properly with the kernel To determine which version of nfs-utils you have on your
system, run the following command:

$ showmount --version

Other Tools

There are a few other important programs that are closely tied to the kernel
version. These programs are not usually required in order for the kernel to work
properly, but they enable access to different types of hardware and functions.

* Some distributions, notably Debian, call this package quota instead of quota-tools.

t Some distributions, notably Debian, call this package nfs-common instead of nfs-utils.

Tools to Use the Kernel | 9

- ikl

i% ,ch02.11211 Page 10 Friday, December 1, 2006 9:57 AM

udev

udev is a program that enables Linux to provide a persistent device-naming system
in the /dev directory. It also provides a dynamic /dev, much like the one provided
by the older (and now removed) devfs filesystem. Almost all Linux distributions
use udev to manage the /dev directory, so it is required in order to properly boot
the machine.

Unfortunately, udev relies on the structure of /sys, which has been known to
change from time to time with kernel releases. Some of these changes in the past
have been known to break udev, so that your machine will not boot properly. If
you have the latest version of udev recommended for your kernel and have prob-
lems with it working properly, please contact the udev developers on the mailing
list available at linux-hotplug-devel@lists.sourceforge.net.

It is highly recommended that you use the version of udev that comes with your
Linux distribution, as it is tied into the distribution specific boot process very
tightly. But if you wish to upgrade udev on your own, you can find it at http://
www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html.

As of the 2.6.18 kernel release, the 081 release of udev is the oldest that works
properly with the kernel. It is recommended that you use the latest version of
udev, because it will work better with newer kernels, due to changes in how udev
and the kernel communicate.

To determine which version of udev you have on your system, run the following
command:

$ udevinfo -V

Process tools

The package procps includes the commonly used tools ps and top, as well as many
other handy tools for managing and monitoring processes running on the system.

If you wish to download and install this package yourself, you can find it at http://
procps.sourceforge.net.

As of the 2.6.18 kernel release, the 3.2.0 release of procps is the oldest that works
properly with the kernel. To determine which version of procps you have on your
system, run the following command:

$ ps --version

PCMCIA tools

In order to properly use PCMCIA devices with Linux, a userspace helper program
must be used to set up the devices. For older kernel versions, this program was
called pcmcia-cs, but that has been replaced with a much simpler system called
pemciautils. 1If you wish to use PCMCIA devices, you must have this package
installed for them to work properly.

10 | Chapter2: Requirements for Building and Using the Kernel

- ikl

ig ,ch02.11211 Page 11 Friday, December 1, 2006 9:57 AM ig

If you wish to download and install this package yourself, you can find it at ftp://
ftp.kernel.org/publ/linux/utils/kernel/pcmcia.

As of the 2.6.18 kernel release, the 004 release of pcmciautils is the oldest that
works properly with the kernel. But the latest version is recommended in order to
take advantage of newer features in the PCMCIA subsystem, such as automatic
driver loading when new devices are found.

To determine which version of pcmciautils you have on your system, run the
following command:

$ pccardctl -V

=
o
2
=5
S
o
3
o
S
-
w

Tools to Use the Kernel | 11

4~ ~4/0

i% ,ch03.11449 Page 12 Friday, December 1, 2006 9:58 AM

Retrieving the Kernel Source

When you’re building your own kernel, you want the latest stable release. Many
distributions provide their own packages of kernel sources, but these are rarely
the most cutting-edge, recent versions. The distribution packages have the advan-
tage of being built to be compatible with the compiler and other tools provided by
the distribution (Chapter 2 explains the importance of their being compatible) but
they may not end up providing the functionality or performance you want. If you
can create your own environment with the latest kernel, compiler, and other tools,
you will be able to build exactly what you want. This chapter focuses on deter-
mining which kernel sources to download, and how to obtain them.

What Tree to Use

In the past, the Linux kernel was split into only two trees, the “development”
branch and the “stable” branch. The development branch was denoted by an odd
number for the second release number, while the stable branch used even
numbers. So, as an example, the 2.5.25 release was a development kernel, while
the 2.4.25 release is a stable release.

But after the 2.6 series was created, the kernel developers decided to abandon this
method of having two separate trees, and declared that all 2.6 kernel releases
would be considered “stable,” no matter how quickly development was
happening. The few months between the major 2.6 releases would allow kernel
developers the time to add new features and then stabilize them in time for the
next release. Combined with this, a “-stable” kernel branch has been created that
releases bug fixes and security updates for the past kernel release, before the next
major 2.6 release happens.

This is all best explained with some examples, illustrated in Figure 3-1. The
kernel team released the 2.6.17 kernel as a stable release. Then the developers
started working on new features and started releasing the -r¢ versions as devel-
opment kernels so that people could help test and debug the changes. After

12

- ikl

i% ,ch03.11449 Page 13 Friday, December 1, 2006 9:58 AM i%

everyone agreed that the development release was stable enough, it was released
as the 2.6.18 kernel. This whole cycle usually takes about two to three months,
depending on a variety of factors.

Stable release
Development release

2.6.18-rc4

2.6.18

| 2.6.17.4 |

=
2
-
s =
o n
> =.
bS]
ea
3z
o o

| 2.6.18.1 |

2.6.19-rc1

2.6.18.2
2.6.19-1C2

2.6.18.3

2.6.19-rC3
| 2.6.18.4 |

b

2.6.19-rc4

2.6.19-1C5

Figure 3-1. Kernel development release cycle

While the development of the new features was happening, the 2.6.17.1, 2.6.17.2,
and other stable kernel versions were released, containing bug fixes and security
updates.

If you wish to just use the latest kernel for your work, it is recommended that you
use the stable kernel releases. If you wish to help the kernel developers test the
features of the next kernel release and give them feedback, use the development
kernel release. For the purpose of this chapter, we will assume that you are using a
stable kernel release.

Where to Find the Kernel Source

All of the source code for the Linux kernel can be found on one of the kernel.org
sites, a worldwide network of servers that mirror the Linux source code, enabling
anyone to find a local server close to him. This allows the main kernel servers to

Where to Find the Kernel Source | 13

- ikl

,ch03.11449 Page 14 Friday, December 1, 2006 9:58 AM

be responsive to the mirror sites, and lets users download the needed files as
quickly as possible.

The main http://www.kernel.org site shows all of the current kernel versions for
the various different kernel trees, as shown in Figure 3-2.

The Linux Kernel Archives - Mozilla Firefox

File Edit View Go Bookmarks Tools Help delicio.us

<:EI - E:> > g E - @ vlg} http:ffwww kernel org/ l?]] l@-

[+]

The Linux Kernel Archives

‘Welcome to the Linux Kernel Archives. This is

S ite for the Linux kernel source, but it has
much more :

% lkernels.

Protocol Location
HTTP http: /Ay lkernel.org/pub/
FTP ftp:/iftp kernel.org/pub/

RSYNC rsync:firsync.kernel.org/pub/
The latest stable version of the Linux kerel is: 2.6.17.9 2006-08-18 16:35 UTC F V VI C Changelog
The latest prepatch for the stable Linux kernel tree is: 2.6.18-rc4 2006-08-07 18:23 UTC V VI C Changelog
The latest snapshot for the stable Linux kernel tree is: 2.,6.18-rc4-gitl 2006-08-20 07:01 UTC V C
The latest 2.4 version of the Linux kernel is: 2.4.33.1 2006-08-19 13:49 UTC F vV C Changelog
The latest prepatch for the 2.4 Linux kernel tree is: 2.4.34-prel 2006-08-1621:22 UTC Vv C Changelog
The latest 2.2 version of the Linux kernel is: 2.2.26 2004-02-2500:28UTC F V Changelog
The latest prepatch for the 2.2 Linux kernel tree is: 2.2.27-rc2 2005-01-12 23:55 UTC Vv VI Changelog
The latest -mm patch to the stable Linux kernels is: 2.6.18-rc4-mm2 2006-08-20 04:13 UTC V Changelog

F = full source, V = view patch, VI = view incremental, C = current changesets
Changelogs are provided by the kernel authors directly. Please don't write the webmaster about them
Customize the patch viewer

77185kbps ¢

P - P r
‘ LL AR |
\"fflw ‘r.rl'.’rL«' l‘r‘”ll"fu'}"lfl' " I\'ﬂ”"k"l'm u'w.'#\.«.u.mwu”"***-.mum'f W

» 1

%

419559632 206 3.003.36 JCS?‘

up 24d 22h 34m | | zeus2 up 17d 17h 10m

[1]

Figure 3-2. The main kernel.org web site

To download the latest stable kernel version, click on the F character on the line
for the kernel version. This will download the full source tree. Or you can navi-
gate to the proper subdirectory for all of the 2.6 kernel versions, http://www.us.
kernel.org/pub/linux/kernel/v2.6/, shown in Figure 3-3.

It is also possible to download the kernel source from the command line, using
the wget or curl utilities, both of which should come with your Linux distribution.

To download the 2.6.17.8 kernel version using wget, enter:

$ wget http://www.kernel.org/pub/linux/kernel/v2.6/1linux-2.6.17.8.tar.gz
--17:44:55-- http://www.kernel.org/pub/linux/kernel/v2.6/1inux-2.6.17.8.
tar.gz

=> "linux-2.6.17.8.tar.gz’
Resolving www.kernel.org... 204.152.191.5, 204.152.191.37
Connecting to www.kernel.org|204.152.191.5|:80... connected.
HTTP request sent, awaiting response... 200 OK

14 | Chapter3: Retrieving the Kernel Source

i% ,ch03.11449 Page 15 Friday, December 1, 2006 9:58 AM

(5] Index of /pub/linux/kernel/v2.6 - Mozilla Firefox = (3%

File Edit Wiew Go Bookmarks Tools Help del.icio.us

<):I - L‘r\/ - @ O fag) @ - [{} http:/fwww kernel org/pubflinuxikerneliv2 ¢ l [@_]

Index of /pub/linux/kernel/v2.6 E
Name Last modified Size

3 Parent Directory

E} incr/ 18-Aug-2006 16:43

@ pre-releases/ 18-Dec-2003 15:50

@ snapshots/ 20-Aug-2006 07:02

E} testing/ 07-Aug-2006 18:56
Changelog-2.6.8 18-Dec-2003 03:04 12K rf ?;
Changelog-2.6.1 09-Jan-2804 07:08 189K g %’
Changelog-2.6.2 04-Feb-2004 04:06 286K § E‘
Changelog-2.6.3 18-Feb-2004 04:11 300K E ;
Changelog-2.6.4 11-Mar-2004 03:17 321K o
Changeleg-2.6.5 04-Apr-2004 03:52 358K
Changelog-2.6.8 10-May-2004 02:52 487K
changelog-2.6.7 16-Jun-2004 05:50 761K
Changelog-2.6.8 14-Aug-2004 06:02 883K
Changelog-2.6.8.1 14-Aug-2004 11:12 263
ChangelLog-2.6.9 19-0ct-2004 17:44 1.2M |
Fhonnnlan 5 &2 10 54 Pine 9AMRA 97,30 1 BM 1=

Figure 3-3. The 2.6 kernel source directory

Length: 51,707,742 (49M) [application/x-gzip]

100%[>] 51,707,742 35.25K/s
ETA 00:00

18:02:48 (47.12 KB/s) - “linux-2.6.17.8.tar.gz' saved [51707742/51707742]

To download it using curl:

$ curl http://www.kernel.org/pub/linux/kernel/v2.6/1inux-2.6.17.8.tar.gz \
-o linux-2.6.17.8.tar.gz

% Total % Received % Xferd Average Speed Time Time Time
Current
Dload Upload Total Spent Left
Speed
100 49.3M 100 49.3M 0 0 50298 0 0:17:08 0:17:08 --:--:--
100k

For a quick and easy way to determine the latest kernel versions, use the informa-
tion available at http://'www.kernel.org/kdist/finger_banner, illustrated by Figure 3-4.

What to Do with the Source

Now that you have downloaded the proper kernel source, where is it supposed to
go? We suggest creating a local directory in your home directory called linux to
hold all of the different kernel source files:

$ mkdir ~/linux

What to Do with the Source | 15

4~ ~4/0

* ,ch03.11449 Page 16 Friday, December 1, 2006 9:58 AM

Mozilla Firefox

File Edit View Go Bookmarks Tools Help delicious

<3:| - [> - g E tag) ® - [Q http:/fwww.kernel org/kdist/finger_banner

17.9
18-rcd
18-rcd-gitl
33.1

The latest stable version of the Linux kernel is:

The latest prepatch for the stable Linux kernel tree is:
The latest snapshot for the stable Linux kernel tree is:
The latest 2.4 version of the Linux kernel is:

The latest prepatch for the 2.4 Linux kernel tree is:
The latest 2.2 version of the Linux kernel is:

The latest prepatch for the 2.2 Linux kernel tree is:
The latest -mm patch to the stable Linux kernels is:

MR NN NN
TN E RGO
w
kS
B
=4
o
o

18-rcd-mm2

Figure 3-4. Latest kernel version

Now move the source code into this directory:
$ mv ~/linux-2.6.17.8.tar.gz ~/linux/
And go into the linux directory:

$ cd ~/linux
$ 1s
linux-2.6.17.8.tar.gz

Now that the source code is in the proper directory, uncompress the tree:
$ tar -xzvf linux-2.6.17.8.tar.gz

The screen will be filled with files that are uncompressed, and you will be left with
the following in the linux/ directory:

$1s
linux-2.6.17.8.tar.gz
linux-2.6.17.8/

16 | Chapter3: Retrieving the Kernel Source

i% ,ch04.11580 Page 17 Friday, December 1, 2006 9:59 AM

Configuring and Building

Now that you have downloaded the source for your selected kernel version and
installed it into a local directory, it is time to build the code. The first step is to
configure the kernel with the appropriate options; the kernel can then be
compiled. Both tasks are done through the standard make utility.

Creating a Configuration

The kernel configuration is kept in a file called .config in the top directory of the
kernel source tree. If you have just expanded the kernel source code, there will be
no .config file, so it needs to be created. It can be created from scratch, created by
basing it on the “default configuration,” taken from a running kernel version, or
taken from a distribution kernel release. We will cover the first two methods here,
and the last two methods in Chapter 7.

Configuring from Scratch

The most basic method of configuring a kernel is to use the make config method:

$ cd linux-2.6.17.10

$ make config

make config

scripts/kconfig/conf arch/i386/Kconfig

Linux Kernel Configuration

Code maturity level options

EE R R

Prompt for development and/or incomplete code/drivers (EXPERIMENTAL) [Y/n/?]

Y
*

* General setup
*

17

4~ ~4/0

i% ,ch04.11580 Page 18 Friday, December 1, 2006 9:59 AM

Local version - append to kernel release (LOCALVERSION) []
Automatically append version information to the version string
(LOCALVERSION AUTO) [Y/n/2] Y

The kernel configuration program will step through every configuration option
and ask you if you wish to enable this option or not. Typically, your choices for
each option are shown in the format [Y/m/n/?] The capitalized letter is the
default, and can be selected by just pressing the Enter key. The four choices are:

y Build directly into the kernel.

n Leave entirely out of the kernel.

m Build as a module, to be loaded if needed.

? Print a brief descriptive message and repeat the prompt.

The kernel contains almost two thousand different configuration options, so
being asked for every individual one will take a very long time. Luckily, there is an
easier way to configure a kernel: base the configuration on a pre-built
configuration.

Default Configuration Options

Every kernel version comes with a “default” kernel configuration. This configura-
tion is loosely based on the defaults that the kernel maintainer of that architecture
feels are the best options to be used. In some cases, it is merely the configuration
that is used by the kernel maintainer himself for his personal machines. This is
true for the i386 architecture, where the default kernel configuration matches
closely what Linus Torvalds uses for his main development machine.

To create this default configuration, do the following;:

$ cd linux-2.6.17.10
$ make defconfig

A huge number of configuration options will scroll quickly by the screen, and a
.config file will be written out and placed in the kernel directory. The kernel is
now successfully configured, but it should be customized to your machine in
order to make sure it will operate correctly.

Modifying the Configuration

Now that we have a basic configuration file created, it should be modified to
support the hardware you have present in the system. For details on how to find
out which configuration options you need to select to achieve this, please see
Chapter 7. Here we will show you how to select the options you wish to change.

There are three different interactive kernel configuration tools: a terminal-based
one called menuconfig, a GTK+-based graphical one called gconfig, and a QT-
based graphical one called xconfig.

18 | Chapter4: Configuring and Building

- ikl

,ch04.11580 Page 19 Friday, December 1, 2006 9:59 AM

Console Configuration Method

The menuconfig way of configuring a kernel is a console-based program that offers
a way to move around the kernel configuration using the arrow keys on the
keyboard. To start up this configuration mode, enter:

$ make menuconfig

You will be shown a screen much like Figure 4-1.

Arrow keys navigate the menu, <Enter’ selects submenus -,
Highlicghted letters are hotkeys., Pressing <Y> includes, <M> excludes.
<M modularizes features, Press <Escy<Esck to exit, <% for Help, </
for Search, Legend: [*] built-in [] excluded <M» module < >

|l Code maturity 1
eneral setup ——3
oadable module support —-3
lock layer -—>
rocessar tupe and features -——>
ouer mahagement options (ACPL, APM) ——»
us options (PCI, PCHCIA,. EISA, WCA. ISA) ——

¥ecutable File formats -——>
M tworking ——=»
evice Drivers -——>

™
ERS
2 S
™ =h
£ a
=c
. 3,
55
3 a

& Exit > g Help >

Figure 4-1. Initial menuconfig screen

The instructions for navigating through the program, and the meanings of the
different characters, are shown at the top of the screen. The rest of the screen
containing the different kernel configuration options.

The kernel configuration is divided up into sections. Each section contains
options that correspond to a specific topic. Within those sections can be sub-
sections for various specialized topics. As an example, all kernel device drivers can
be found under the main menu option Device Drivers. To enter that menu, move
the arrow key down nine times until the line Device Drivers ---»> is highlighted,
as shown in Figure 4-2.

Then press the Enter key. It will move you into the Device Drivers submenu and
show it as illustrated in Figure 4-3.

You can continue to move down through the menu hierarchy the same way. To
see the Generic Driver Options submenu, press Enter again, and you will see the
three options shown in Figure 4-4.

The first two options have a [*] mark by them. That means that this option is
selected (by virtue of the * being in the middle of the [] characters), and that this
option is a yes-or-no option. The third option has a < > marking, showing that
this option can be built into the kernel (Y), built as a module (M), or left out alto-
gether (N).

Modifying the Configuration | 19

Elaf

Figure 4-3. Device Drivers submenu

If the option is selected with Y, the angle brackets will contain a * character. If it is
selected as a module with an M, they will contain an M character. If it is disabled
with N, they will show only a blank space.

So, if you wish to change these three options to select only drivers that do not
need external firmware at compile time, disable the option to prevent firmware
from being built, and build the userspace firmware loader as a module, press Y for
the first option, N for the second option, and M for the third, making the screen
look like Figure 4-5.

After you are done with your changes to this screen, press either the Escape key or
the right arrow followed by the Enter key to leave this submenu. All of the
different kernel options can be explored in this manner.

20 | Chapter4: Configuring and Building

%

,ch04.11580 Page 21 Friday, December 1, 2006 9:59 AM

ly dr

Figure 4-4. Generic Driver Options submenu

Buipjing pue

Figure 4-5. Generic Driver Options submenu changed

When you are finished making all of the changes you wish to make to the kernel
configuration, exit the program by pressing the Escape key on the main menu.
You will be shown the screen in Figure 4-6, asking whether you wish to save your
changed kernel configuration.

Figure 4-6. Saving kernel options

Press Enter to save the configuration, or if you wish to discard any changes made,
press the right arrow to move to the <No> selection and then press Enter.

Modifying the Configuration | 21

%% ,ch04.11580 Page 22 Friday, December 1, 2006 9:59 AM

Graphical Configuration Methods

The gconfig and xconfig methods of configuring a kernel use a graphical program
to allow you to modify the kernel configuration. The two methods are almost
identical, the only difference being the different graphical toolkit with which they
are written. gconfig is written using the GTK+ toolkit and has a two-pane screen
looking like Figure 4-7.

Linux Kernel v2.6.17.11 Configuration

gile Options Help

9 B B | Il E -
Bac} Load Save Single Split Full Collapse Expand
.Opt\ons Name N | M| Y| Value £

v Code maturity level options

P General setup
Loadable module support
Block layer
Processor type and features

Power management options (ACPI, APM)

b
b
4
4
[Bus options (PCI, PCMCIA, EISA, MCA, ISA)
P Executable file formats =
P Networking

P Device Drivers

b

File systems

(4]

Cade maturity level options

Figure 4-7. make gconfig screen

The xconfig method is written using the QT toolkit and has a three-pane screen
looking like Figure 4-8.

Use the mouse to navigate the submenus and select options. For instance, you can
use it in Figure 4-8 to select the Generic Driver Options submenu of the Device
Drivers menu. This will change the xconfig screen to look like Figure 4-9. The
corresponding gconfig screen is Figure 4-10.

Changing this submenu to disable the second option and make the third option
be built as a module causes the screens to look like Figures 4-11 and 4-12.

Please note that in the gconfig method, a checked box signifies that the option will
be built into the kernel, whereas a line though the box means the option will be
built as a module. In the xconfig method, an option built as a module will be
shown with a dot in the box.

Both of these methods prompt you to save your changed configuration when
exiting the program, and offer the option to write that configuration out to a
different file. In that way you can create multiple, differing configurations.

22 | Chapter4: Configuring and Building

,ch04.11580 Page 23 Friday, December 1, 2006 9:59 AM

File Option Help

i@ |l E
Option |« || | Option |_
EPrompt for development and/or incomplete code/drivers
= General setup
OConfigure standard kemel features (for small sys
Loadable module suppont
& Block layer
10 Schedulers
© Processor type and features
Firmware Drivers
= Power management optiens (ACPI, APM) L=
ACPI (Advanced Configuration and Power Interface
APM (Advanced Power Management) BIOS Suppt
CPU Frequency scaling
= Bus options (PCI, PCMCIA, EISA, MCA, ISA)
PCCARD (PCMCIA/CardBus) support
PCI Hotplug Support
Executable file formats
Networking
© Device Drivers
Generic Driver Options Code maturity level options

Connector - unified userspace <-> kemelspace link
Memory Technology Devices (MTD)

Paralle| port support

Plug and Play support

Block devices

ATA/ATAPIMFM/RLL support

SCSI device support

Multi-device support (RAID and LVM)

Fusion MPT device support

IEEE 1394 (FireWire) support

El 120 device sunnort 7
(1] [«Ix]

Juo)

o
S
o
=]
<.
=
5

a

purnbi

Figure 4-8. make xconfig screen

Building the Kernel

Now that you have created a kernel configuration that you wish to use, you need
to build the kernel. This is as simple as entering a one-word command:

$ make
CHK include/linux/version.h
uPD include/linux/version.h

SYMLINK include/asm -> include/asm-i386
SPLIT include/linux/autoconf.h -> include/config/*

cC arch/i386/kernel/asm-offsets.s
GEN include/asm-i386/asm-offsets.h
cC scripts/mod/empty.o

HOSTCC scripts/mod/mk_elfconfig
MKELF scripts/mod/elfconfig.h
HOSTCC scripts/mod/file2alias.o
HOSTCC scripts/mod/modpost.o
HOSTCC scripts/mod/sumversion.o
HOSTLD scripts/mod/modpost
HOSTCC scripts/kallsyms

HOSTCC scripts/conmakehash
HOSTCC scripts/bin2c

cC init/main.o

Building the Kernel | 23

%% ,ch04.11580 Page 24 Friday, December 1, 2006 9:59 AM

File Option Help

@ |l E

Option

IC

Option
Code maturity level options =
= General setup ElSelect only drivers that don't need compiletime extemnal firm|

OConfigure standard kemel features (for small sy: EIPrevent firmware from being built
Loadable module support OUserspace firmware loading support
& Block layer
10 Schedulers
© Processor type and features
Firmware Drivers
= Power management options (ACPI, APM) L
ACPI (Advanced Configuration and Power Interface
APM (Advanced Power Management) BIOS Suppt
CPU Frequency scaling
= Bus options (PCI, PCMCIA, EISA, MCA, ISA)
PCCARD (PCMCIA/CardBus) support
PCI Hotplug Support
Executable file formats
Networking <1 | [H1+]
© Device Drivers E
Generic Dri
Connector - unified userspace <-> kemelspace link
Memory Technology Devices (MTD)
Paralle| port support
Plug and Play support
Block devices
ATA/ATAPIMFM/RLL support
SCSI device support
Multi-device support (RAID and LVM)
Fusion MPT device support
IEEE 1394 (FireWire) suppert ﬁ
-

120 device sunnaort

Generic Driver Options

Figure 4-9. make xconfig Generic Driver Options

I'v2.6.17.11 Cor

Eile Options Help

9 &5 & \ Il E - +*
Back Load Save Single Split Full Collapse Expand
Options Name N | M| Y| Value [

-

Power management options (ACPI, APM)
Bus options (PCI, PCMCIA, EISA, MCA, ISA}
Executable file formats

MNetworking W

Device Drivers

Select only drivers that don't need compile-time external firmware STANDALONE

Prevent firmware from being built PREVENT_FIRMWARE_BUILD _ Yy
[Juserspace firmware loading support FW_LOADER
P Connector - unified userspace <-> kernelspace linker

P Memory Technology Devices (MTD)

[«]

b Darallal e cinno: o+

Generic Driver Options

Figure 4-10. make gconfig Generic Driver Options

24 | (Chapter4: Configuring and Building

% ,ch04.11580 Page 25 Friday, December 1, 2006 9:59 AM

File Option Help

@ |l E

Option 1+] | option |
Code maturity level options =
& General setup [ASelect only drivers that don't need compiletime extemnal firmware
OConfigure standard kemel features (for sm) OPrevent firmware from being built
Loadable madule suppor
& Block layer

10 Schedulers
2 Processor type and features
Firmware Drivers
= Power management options (ACPI, APM) k=3
ACPI (Advanced Configuration and Power Int
APM (Advanced Power Management) BIOS
CPU Frequency scaling
= Bus options (PCI, PCMCIA, EISA, MCA, ISA)
PCCARD (PCMCIA/CardBus) support
PCI Hotplug Support
Executable file formats
Networking
© Device Drivers

Userspace firmware loading support (FW_LOADER)

Connector - unified userspace <-> kemnelspa
Memory Technology Devices (MTD)

Paralle| port support

Plug and Play support

Block devices

ATAJATAPIMFM/RLL support

SCSI device support

Multi-device support (RAID and LVM)

Fusion MPT device support

IEEE 1394 (FireWire) support i
120 device sunnort

]] KR)

This option is provided for the case where no in-kemeltree modules
require userspace firmware loading suppor, but a module built
outside

the kemel tree does

yuo)

o
S
o
=]
<.
=
5

a

purnbi

Figure 4-11. make xconfig Generic Driver Options changed

Linux Kernel v2.6.17.11 Confi

Eile Options Help

9 = H \ Il E -

Load Save Single Split Full Collapse Expand

[»]

Options Name N | M| Y| Value
> Power management options (ACPI, APM) =

P Bus options (PCI, PCMCIA, EISA, MCA, ISA)
P Executable file formats L
P Networking
< Device Drivers

= Generic Driver Options

Select only drivers that don't need compile-time external firmware STANDALONE ¥

Y
[prevent firmware from being built PREVENT_FIRMWARE_BUILD N N

U irmi

P Connector - unified userspace <-> kernelspace linker

(1]

Userspace firmware loading support FW_LOADER

This option is provided for the case where no in-kernel-tree modules
require userspace firmware loading support, but @ module built outside
the kernel tree does.

Figure 4-12. make gconfig Generic Driver Options changed

Building the Kernel | 25

i% ,ch04.11580 Page 26 Friday, December 1, 2006 9:59 AM

CHK include/linux/compile.h
UPD include/linux/compile.h
cc init/version.o

cC init/do_mounts.o

Running make causes the kernel build system to use the configuration you have
selected to build a kernel and all modules needed to support that configuration.
While the kernel is building, make displays the individual filenames of what is
currently happening, along with any build warnings or errors.

If the kernel build finished without any errors, you have successfully created a
kernel image. However, it needs to be installed properly before you try to boot
from it. See Chapter 5 for how to do this.

It is very unusual to get any build errors when building a released kernel version.
If you do, please report them to the Linux kernel developers so they can be fixed.

Advanced Building Options

The kernel build system allows you to do many more things than just build the
full kernel and modules. Chapter 10 includes the full list of options that the kernel
build system provides. In this section, we will discuss some of these advanced
build options. To see a full description of how to use other advanced build
options, refer to the in-kernel documentation on the build system, which can be
found in the Documentation/kbuild directory of the sources.

Building Faster on Multiprocessor Machines

The kernel build system works very well as a task that can be split up into little
pieces and given to different processors. By doing this, you can use the full power
of a multiprocessor machine and reduce the kernel build time considerably.

To build the kernel in a multithreaded way, use the -j option to the make
program. It is best to give a number to the -j option that corresponds to twice the
number of processors in the system. So, for a machine with two processors
present, use:

$ make -j4

and for a machine with four processors, use:
$ make -j8

If you do not pass a numerical value to the -j option:
$ make -j

the build system will create a new thread for every subdirectory in the kernel tree,
which can easily cause your machine to become unresponsive and take a much
longer time to complete the build. Because of this, it is recommended that you
always pass a number to the -j option.

* Older kernel versions prior to the 2.6 release required the additional step of make modules to build
all needed kernel modules. That is no longer required.

26 | Chapter4: Configuring and Building

4~ ~4/0

ig ,ch04.11580 Page 27 Friday, December 1, 2006 9:59 AM

Building Only a Portion of the Kernel

When doing kernel development, sometimes you wish to build only a specific
subdirectory or a single file within the whole kernel tree. The kernel build system
allows you to easily do this. To selectively build a specific directory, specify it on
the build command line. For example, to build the files in the drivers/usb/serial
directory, enter:

$ make drivers/usb/serial

Using this syntax, however, will not build the final module images in that direc-
tory. To do that, you can use the M= argument:

$ make M=drivers/usb/serial

which will build all the needed files in that directory and link the final module
images.

When you build a single directory in one of the ways shown, the final kernel
image is not relinked together. Therefore, any changes that were made to the
subdirectories will not affect the final kernel image, which is probably not what
you desire. Execute a final:

$ make

™
ERY
2 S
™ =h
£ a
=c
o =
8.2
3 a

to have the build system check all changed object files and do the final kernel
image link properly.

To build only a specific file in the kernel tree, just pass it as the argument to make.
For example, if you wish to build only the drivers/usb/serial/visor.ko kernel
module, enter:

$ make drivers/usb/serial/visor.ko

The build system will build all needed files for the visor.ko kernel module, and do
the final link to create the module.

Source in One Place, Output in Another

Sometimes it is easier to have the source code for the kernel tree in a read-only
location (such as on a CD-ROM, or in a source code control system), and place
the output of the kernel build elsewhere, so that you do not disturb the original
source tree. The kernel build system handles this easily, by requiring only the
single argument 0= to tell it where to place the output of the build. For example, if
the kernel source is located on a CD-ROM mounted on /mnt/cdrom/ and you wish
to place the built files in your local directory, enter:

$ cd /mnt/cdrom/linux-2.6.17.11
$ make 0=~/linux/linux-2.6.17.11

All of the build files will be created in the ~/linux/linux-2.6.17.11/ directory. Please
note that this 0= option should also be passed to the configuration options of the
build so that the configuration is correctly placed in the output directory and not
in the directory containing the source code.

Advanced Building Options | 27

- ikl

i% ,ch04.11580 Page 28 Friday, December 1, 2006 9:59 AM

Different Architectures

A very useful feature is building the kernel in a cross-compiled manner to allow a
more powerful machine to build a kernel for a smaller embedded system, or just
to check a build for a different architecture to ensure that a change to the source
code did not break something unexpected. The kernel build system allows you to
specify a different architecture from the current system with the ARCH= argument.
The build system also allows you to specify the specific compiler that you wish to
use for the build by using the CC= argument or a cross-compile toolchain with the
CROSS_COMPILE argument.

For example, to get the default kernel configuration of the x86_64 architecture,
you would enter:

$ make ARCH=x86_64 defconfig

To build the whole kernel with an ARM toolchain located in /usr/local/bin/, you
would enter:

$ make ARCH=arm CROSS_COMPILE=/usx/local/bin/axm-linux-

It is useful even for a non-cross-compiled kernel to change what the build system
uses for the compiler. Examples of this are using the distcc or ccache programs,
both of which help greatly reduce the time it takes to build a kernel. To use the
ccache program as part of the build system, enter:

$ make CC="ccache gcc"
To use both distcc and ccache together, enter:

$ make CC="ccache distcc"

28 | Chapter4: Configuring and Building

- 4~ 4/

i% ,ch05.11733 Page 29 Friday, December 1, 2006 10:00 AM

Installing and Booting from a
Kernel

Previous chapters showed you how to download and build your kernel. Now that
you have an executable file—along with any modules you built—it is time to
install the kernel and attempt to boot it. In this chapter, unlike earlier ones, all of
the commands need to be run as the root user. This can be done by prefixing each
command with sudo, by using the su command to become root, or actually by
logging in as root.

To see whether you have sudo installed and the proper access set up, do the
following:

$ sudo 1s ~/linux/linux-2.6.17.11/Makefile
Password:
Makefile

Enter either your own password at the password prompt, or the password of the
system administrator (root). The choice depends on how the sudo command is set
up. If this is successful, and you see the line containing:

Makefile
then you can skip to the next section.
If sudo is not installed or giving you the proper rights, try using the su command:

$ su
Password:
exit
exit

$

At the password prompt, enter the password of the system administrator (root).
When the su program successfully accepts the password, you are transferred to
running everything with full root privileges. Be very careful while as root, and do
only the minimum needed; then exit the program to continue back as your
normal user account.

29

4~ ~4/0

i% ,ch05.11733 Page 30 Friday, December 1, 2006 10:00 AM

Using a Distribution’s Installation Scripts

Almost all distributions come with a script called installkernel that can be used by
the kernel build system to automatically install a built kernel into the proper loca-
tion and modify the bootloader so that nothing extra needs to be done by the
developer.”

A
- Distributions that offer installkernel usually put it in a package
" called mkinitrd, so try to install that package if you cannot find the
‘. 4 & . .
o3 script on your machine.

If you have built any modules and want to use use this method to install a kernel,
first enter:

make modules_install

This will install all the modules that you have built and place them in the proper
location in the filesystem for the new kernel to properly find. Modules are placed
in the /lib/modules/kernel version directory, where kernel version is the kernel
version of the new kernel you have just built.

After the modules have been successfully installed, the main kernel image must be
installed:

make install
This will kick off the following process:

1. The kernel build system will verify that the kernel has been successfully built
properly.

2. The build system will install the static kernel portion into the /boot directory
and name this executable file based on the kernel version of the built kernel.

3. Any needed initial ramdisk images will be automatically created, using the
modules that have just been installed during the modules_install phase.

4. The bootloader program will be properly notified that a new kernel is
present, and it will be added to the appropriate menu so the user can select it
the next time the machine is booted.

5. After this is finished, the kernel is successfully installed, and you can safely
reboot and try out your new kernel image. Note that this installation does not
overwrite any older kernel images, so if there is a problem with your new
kernel image, the old kernel can be selected at boot time.

* Notable exceptions to this rule are Gentoo and other “from scratch” types distributions, which
expect users to know how to install kernels on their own. These types of distributions include
documentation on how to install a new kernel, so consult it for the exact method required.

30 | Chapter5: Installing and Booting from a Kernel

ig ,ch05.11733 Page 31 Friday, December 1, 2006 10:00 AM

Installing by Hand

If your distribution does not have a installkernel command, or you wish to just do
the work by hand to understand the steps involved, here they are:

The modules must be installed:
make modules_install

The static kernel image must be copied into the /boot directory. For an i386-based
kernel, do the following:

make kernelversion
2.6.17.11

Note that the kernel version will probably be different for your kernel. Use this
value in place of the text KERNEL_VERSION in the following steps:

cp arch/i386/boot/bzImage /boot/bzImage-KERNEL_VERSION
cp System.map /boot/System.map-KERNEL_VERSION

Modify the bootloader so it knows about the new kernel. This involves editing a
configuration file for the bootloader you use, and is covered later in “Modifying
the Bootloader for the New Kernel” for the GRUB and LILO bootloaders.

If the boot process does not work properly, it’s usually because an initial ramdisk
image is needed. To create this properly, use the steps in the beginning of this
chapter for installing a kernel automatically, because the distribution install
scripts know how to properly create the ramdisk using the needed scripts and
tools. Because each distribution does this differently, it is beyond the scope of this
book to cover all of the different methods of building the ramdisk image.

£}
w
a
&
5
@
o
S
o

Here is a handy script that can be used to install the kernel automatically instead
of having to type the previous commands all the time:

#1/bin/sh

#

installs a kernel
#

make modules install

find out what kernel version this is

for TAG in VERSION PATCHLEVEL SUBLEVEL EXTRAVERSION ; do
eval “sed -ne "/"$TAG/s/ //gp" Makefile’

done

SRC_RELEASE=$VERSION.$PATCHLEVEL.$SUBLEVEL$EXTRAVERSION

figure out the architecture
ARCH="grep "CONFIG_ARCH " include/linux/autoconf.h | cut -f 2 -d "\""*

copy the kernel image
cp arch/$ARCH/boot/bzImage /boot/bzImage-"$SRC_RELEASE"

copy the System.map file
cp System.map /boot/System.map-"$SRC_RELEASE"

echo "Installed $SRC_RELEASE for $ARCH"

InstallingbyHand | 31

4~ ~4/0

i% ,ch05.11733 Page 32 Friday, December 1, 2006 10:00 AM

Modifying the Bootloader for the New Kernel

There are two common Linux kernel bootloaders: GRUB and LILO. GRUB is the
one more commonly used in modern distributions, and does some things a little
more easily than LILO, but LILO is still seen as well. We’ll cover both in this
section.

To determine which bootloader your system uses, look in the /boot/ directory. If
there is a grub subdirectory:

$ 1s -F /boot | grep grub
grub/

then you are using the GRUB program to boot with. If this directory is not
present, look for the presence of the /etc/lilo.conf file:

$ 1s /etc/lilo.conf
/etc/lilo.conf

If this is present, you are using the LILO program to boot with.

The steps involved in adding a new kernel to each of these programs are different,
so follow only the section that corresponds to the program you are using.

GRUB

To let GRUB know that a new kernel is present, all you need to do is modify the
/boot/grub/menu.lst file. For full details on the structure of this file, and all of the
different options available, please see the GRUB info pages:

$ info grub

The easiest way to add a new kernel entry to the /boot/grub/menu.lst file is to copy
an existing entry. For example, consider the following menu.lst file from a Gentoo
system:

timeout 300
default 0

splashimage=(hdo,0)/grub/splash.xpm.gz

title 2.6.16.11
root (hdo,0)
kernel /bzImage-2.6.16.11 root=/dev/sda2 vga=0x0305

title 2.6.16
root (hdo,0)
kernel /bzImage-2.6.16 root=/dev/sda2 vga=0x0305

The line starting with the word title defines a new kernel entry, so this file
contains two entries. Simply copy one block of lines beginning with the title line,
such as:

title 2.6.16.11
root (hdo,0)
kernel /bzImage-2.6.16.11 root=/dev/sda2 vga=0x0305

32 | Chapter5: Installing and Booting from a Kernel

4~ ~4/0

ig ,ch05.11733 Page 33 Friday, December 1, 2006 10:00 AM

Then, add the block to the end of the file, and edit the version number to contain
the version number of the new kernel you just installed. The title does not matter,
so long as it is unique, but it is displayed in the boot menu, so you should make it
something meaningful. In our example, we installed the 2.6.17.11 kernel, so the
final copy of the file looks like:

timeout 300
default 0

splashimage=(hdo,0)/grub/splash.xpm.gz

title 2.6.16.11
root (hdo,0)
kernel /bzImage-2.6.16.11 root=/dev/sda2 vga=0x0305

title 2.6.16
root (hdo,0)
kernel /bzImage-2.6.16 root=/dev/sda2 vga=0x0305

title 2.6.17.11
root (hdo,0)
kernel /bzImage-2.6.17.11 root=/dev/sda2 vga=0x0305

After you save the file, reboot the system and ensure that the new kernel image’s
title comes up in the boot menu. Use the down arrow to highlight the new kernel
version, and press Enter to boot the new kernel image.

LILO

To let LILO know that a new kernel is present, you must modify the /etc/lilo.conf
configuration file and then run the lilo command to apply the changes made to
the configuration file. For full details on the structure of the LILO configuration
file, please see the LILO manpage:

£}
w
a
&
5
@
o
S
o

$ man lilo

The easiest way to add a new kernel entry to the /etc/lilo.conf file is to copy an
existing entry. For example, consider the following LILO configuration file from a
Gentoo system:

boot=/dev/hda
prompt
timeout=50
default=2.6.12

image=/boot/bzImage-2.6.15
label=2.6.15
read-only
root=/dev/hda2

image=/boot/bzImage-2.6.12
label=2.6.12
read-only
root=/dev/hda2

Modifying the Bootloader for the New Kernel | 33

4~ ~4/0

i% ,ch05.11733 Page 34 Friday, December 1, 2006 10:00 AM

The line starting with the word image= defines a new kernel entry, so this file
contains two entries. Simply copy one block of lines beginning with image=, such
as:
image=/boot/bzImage-2.6.15
label=2.6.15
read-only
root=/dev/hda2

Then, add the block to the end of the file, and edit the version number to contain
the version number of the new kernel you just installed. The label does not
matter, so long as it is unique, but it is displayed in the boot menu, so you should
make it something meaningful. In our example, we installed the 2.6.17.11 kernel,
so the final copy of the file looks like:

boot=/dev/hda
prompt
timeout=50
default=2.6.12

image=/boot/bzImage-2.6.15
label=2.6.15
read-only
root=/dev/hda2

image=/boot/bzImage-2.6.12
label=2.6.12
read-only
root=/dev/hda2

image=/boot/bzImage-2.6.17
label=2.6.17
read-only
root=/dev/hda2

After you save the file, run the /shin/lilo program to write the configuration
changes out to the boot section of the disk:

/sbin/lilo
Now the system can be safely rebooted. The new kernel choice can be seen in the

list of kernels that are available at boot time. Use the down arrow to highlight the
new kernel version, and press Enter to boot the new kernel image.

34 | Chapter5: Installing and Booting from a Kernel

- 4~ 4/

i% ,ch06.11888 Page 35 Friday, December 1, 2006 10:02 AM

Upgrading a Kernel

Inevitably it happens: you have a custom-built kernel, working just wonderfully
except for one little thing that you know is fixed in the latest release from the
kernel developers. Or a security problem is found, and a new stable kernel release
is made public. Either way, you are faced with the issue of upgrading the kernel
and you do not want to lose all the time and effort that went into making that
perfect kernel configuration.

This chapter is going to show how easy it is to update a ke