NAME
DLAHQR - i an auxiliary routine called by DHSEQR to update the eigenvalues and Schur decomposition already computed by DHSEQR, by dealing with the Hessenberg submatrix in rows and columns ILO to IHI
SYNOPSIS
SUBROUTINE DLAHQR(
WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
ILOZ, IHIZ, Z, LDZ, INFO )
INTEGER
IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
DOUBLE
PRECISION H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * )
PURPOSE
DLAHQR is an auxiliary routine called by DHSEQR to update the eigenvalues and Schur decomposition already computed by DHSEQR, by dealing with the Hessenberg submatrix in rows and columns ILO to IHI.
ARGUMENTS
WANTT (input) LOGICAL
= .TRUE. : the full Schur form T is required;
= .FALSE.: only eigenvalues are required.
WANTZ (input) LOGICAL
= .TRUE. : the matrix of Schur vectors Z is required;
= .FALSE.: Schur vectors are not required.
N (input) INTEGER
The order of the matrix H. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that H is already upper quasi-triangular in
rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
ILO = 1). DLAHQR works primarily with the Hessenberg
submatrix in rows and columns ILO to IHI, but applies
transformations to all of H if WANTT is .TRUE..
1 <= ILO <= max(1,IHI); IHI <= N.
H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
On entry, the upper Hessenberg matrix H.
On exit, if WANTT is .TRUE., H is upper quasi-triangular in
rows and columns ILO:IHI, with any 2-by-2 diagonal blocks in
standard form. If WANTT is .FALSE., the contents of H are
unspecified on exit.
LDH (input) INTEGER
The leading dimension of the array H. LDH >= max(1,N).
WR (output) DOUBLE PRECISION array, dimension (N)
WI (output) DOUBLE PRECISION array, dimension (N)
The real and imaginary parts, respectively, of the computed
eigenvalues ILO to IHI are stored in the corresponding
elements of WR and WI. If two eigenvalues are computed as a
complex conjugate pair, they are stored in consecutive
elements of WR and WI, say the i-th and (i+1)th, with
WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
eigenvalues are stored in the same order as on the diagonal
of the Schur form returned in H, with WR(i) = H(i,i), and, if
H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
ILOZ (input) INTEGER
IHIZ (input) INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE..
1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
If WANTZ is .TRUE., on entry Z must contain the current
matrix Z of transformations accumulated by DHSEQR, and on
exit Z has been updated; transformations are applied only to
the submatrix Z(ILOZ:IHIZ,ILO:IHI).
If WANTZ is .FALSE., Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
> 0: DLAHQR failed to compute all the eigenvalues ILO to IHI
in a total of 30*(IHI-ILO+1) iterations; if INFO = i,
elements i+1:ihi of WR and WI contain those eigenvalues
which have been successfully computed.
FURTHER DETAILS
2-96 Based on modifications by
David Day, Sandia National Laboratory, USA