NAME
SLAGS2 - compute 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) Z' denotes the transpose of Z
SYNOPSIS
SUBROUTINE SLAGS2(
UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV,
SNV, CSQ, SNQ )
REAL
A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, SNQ,
SNU, SNV
PURPOSE
SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) Z' denotes the transpose of Z.
ARGUMENTS
UPPER (input) LOGICAL
= .TRUE.: the input matrices A and B are upper triangular.
= .FALSE.: the input matrices A and B are lower triangular.
A1 (input) REAL
A2 (input) REAL
A3 (input) REAL
On entry, A1, A2 and A3 are elements of the input 2-by-2
upper (lower) triangular matrix A.
B1 (input) REAL
B2 (input) REAL
B3 (input) REAL
On entry, B1, B2 and B3 are elements of the input 2-by-2
upper (lower) triangular matrix B.
CSU (output) REAL
SNU (output) REAL
The desired orthogonal matrix U.
CSV (output) REAL
SNV (output) REAL
The desired orthogonal matrix V.
CSQ (output) REAL
SNQ (output) REAL
The desired orthogonal matrix Q.