NAME
CHBGV - compute all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x
SYNOPSIS
SUBROUTINE CHBGV(
JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
LDZ, WORK, RWORK, INFO )
INTEGER
INFO, KA, KB, LDAB, LDBB, LDZ, N
COMPLEX
AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
Z( LDZ, * )
PURPOSE
CHBGV computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian and banded, and B is also positive definite.
ARGUMENTS
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
KA (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB (input) INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KB >= 0.
AB (input/output) COMPLEX array, dimension (LDAB, N)
On entry, the upper or lower triangle of the Hermitian band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the contents of AB are destroyed.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KA+1.
BB (input/output) COMPLEX array, dimension (LDBB, N)
On entry, the upper or lower triangle of the Hermitian band
matrix B, stored in the first kb+1 rows of the array. The
j-th column of B is stored in the j-th column of the array BB
as follows:
if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
On exit, the factor S from the split Cholesky factorization
B = S**H*S, as returned by CPBSTF.
LDBB (input) INTEGER
The leading dimension of the array BB. LDBB >= KB+1.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) COMPLEX array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors, with the i-th column of Z holding the
eigenvector associated with W(i). The eigenvectors are
normalized so that Z**H*B*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= N.
WORK (workspace) COMPLEX array, dimension (N)
RWORK (workspace) REAL array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is:
<= N: the algorithm failed to converge:
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N: if INFO = N + i, for 1 <= i <= N, then CPBSTF
returned INFO = i: B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.