NAME
DSPEVD - compute all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage
SYNOPSIS
SUBROUTINE DSPEVD(
JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
IWORK, LIWORK, INFO )
INTEGER
INFO, LDZ, LIWORK, LWORK, N
DOUBLE
PRECISION AP( * ), W( * ), WORK( * ), Z( LDZ, * )
PURPOSE
DSPEVD computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage. If eigenvectors are desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
ARGUMENTS
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, AP is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = 'U', the diagonal
and first superdiagonal of the tridiagonal matrix T overwrite
the corresponding elements of A, and if UPLO = 'L', the
diagonal and first subdiagonal of T overwrite the
corresponding elements of A.
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If N <= 1, LWORK must be at least 1.
If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
If JOBZ = 'V' and N > 1, LWORK must be at least
1 + 6*N + N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (LIWORK)
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.