Díky za článek.
Chápu správně, že zatímco u celých čísel s neomezenou přesností prostě provádím operace a číslo je "přesně", u toho dnešního si předem musím manuálně nastavit chtěnou přesnost a je na mně aby se počítalo "dostatečně přesně", přičemž "neomezeně přesně" to třeba u zlomků s nebinárním jmenovatelem stejně nebude nikdy?
S tím, že systém bez uzardění vypísuje i cifry za hranicí přesnosti (viz ten příklad s 1/99, která není .01 periodicky).
Mimochodem, kdy dojde k tomu že big.Float.Rat dá něco neexaktního (above nebo below)? Ten zlomek se přeci dá udělat exact, ne?
Ten Float má “nekonečnou” přesnost, ale pořád (logicky) konečnou reprezentaci, takže se chová stejně jako normální float64, akorát si drží více “sigfigs” (něco jako float1024 například). V některých jazycích jdou naprosto přesně reprezentovat i iracionální čísla (e, π…), ale to jsou specializované jazyky pro matematiky, ne pro běžné počítání.